Width, Ricci Curvature, and Bisecting Surfaces

Parker Glynn-Adey
University of Toronto
parker.glynn.adey@utoronto.ca
www.pgadey.ca
June 15, 2016

Outline

(1) Ricci Curvature and Width

Outline

(1) Ricci Curvature and Width
(2) Bisecting Surfaces

Outline

(1) Ricci Curvature and Width
(2) Bisecting Surfaces
(3) Sponges

Acknowledgements

- Alex Nabutovsky, Regina Rotman, and Robert Young
- Yevgeney Liokumovich and Zhifei Zhu
- Alfonso Gracia-Saz and Raymond Grinnell
- Almut Burchard and Kasra Rafi
- Stefan Bilaniuk, Marcus Pivato, David Poole, and Reem Yassawi.
- The Entire Tenth Floor of Huron
- Megan Shaw
- KC and Lesley Wynne
- Kathleen Schmidt-Hertzberg, Norman Taylor, Raja Rajagopal, and John Karsemeyer
- Sam Chapin, Derek Krickhan, and Nick Saika

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold.

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

of $(n-1)$-cycles sweeps out M if z assembles to [M]

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

of ($n-1$)-cycles sweeps out M if z assembles to [M] under Almgren's isomorphism:

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

of $(n-1)$-cycles sweeps out M if z assembles to [M] under Almgren's isomorphism: $\pi_{1}\left(\mathcal{Z}_{n-1}(M)\right) \simeq H_{n}(M)$.

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

of $(n-1)$-cycles sweeps out M if z assembles to [M] under Almgren's isomorphism: $\pi_{1}\left(\mathcal{Z}_{n-1}(M)\right) \simeq H_{n}(M)$.

Definition
The width of (M, g) is

($n-1$)-Width

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold. Metrize the space of Lipschitz $(n-1)$-cycles in M.

Definition
A continuous loop

$$
z: S^{1} \rightarrow \mathcal{Z}_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})
$$

of $(n-1)$-cycles sweeps out M if z assembles to [M] under Almgren's isomorphism: $\pi_{1}\left(\mathcal{Z}_{n-1}(M)\right) \simeq H_{n}(M)$.

Definition
The width of (M, g) is

$$
W(M)=\inf _{z}\left(\sup _{p}\left[\operatorname{vol}_{n-1}\left(z_{p}\right)\right]\right)
$$

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

$$
W(U) \leq C(n) \operatorname{vol}_{n}(U)^{\frac{n-1}{n}}
$$

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

$$
W(U) \leq C(n) \operatorname{vol}_{n}(U)^{\frac{n-1}{n}}
$$

Theorem (Burago \& Ivanov 1995)
The 3-torus admits a metrics $T_{k}=\left(T^{3}, g_{k}\right)$ with:

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

$$
W(U) \leq C(n) \operatorname{vol}_{n}(U)^{\frac{n-1}{n}}
$$

Theorem (Burago \& Ivanov 1995)
The 3-torus admits a metrics $T_{k}=\left(T^{3}, g_{k}\right)$ with:

$$
\operatorname{vol}\left(T_{k}\right)=1
$$

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

$$
W(U) \leq C(n) \operatorname{vol}_{n}(U)^{\frac{n-1}{n}}
$$

Theorem (Burago \& Ivanov 1995)
The 3-torus admits a metrics $T_{k}=\left(T^{3}, g_{k}\right)$ with:

$$
\operatorname{vol}\left(T_{k}\right)=1 \text { and } \mathrm{W}\left(T_{k}\right)>k
$$

The ($n-1$)-Width-Volume Inequality

Theorem (Guth 2007)
There are universal constants $C(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ satisfies

$$
W(U) \leq C(n) \operatorname{vol}_{n}(U)^{\frac{n-1}{n}}
$$

Theorem (Burago \& Ivanov 1995)
The 3-torus admits a metrics $T_{k}=\left(T^{3}, g_{k}\right)$ with:

$$
\operatorname{vol}\left(T_{k}\right)=1 \text { and } \mathrm{W}\left(T_{k}\right)>k
$$

(The Width-Volume Inequality doesn't hold for general manifolds.)

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.
Theorem (G-A \& Liokumovich)

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.
Theorem (G-A \& Liokumovich)

$$
\mathrm{W}(M) \leq C(n) \max \left\{1, \operatorname{MCV}(M)^{\frac{1}{n}}\right\} \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.
Theorem (G-A \& Liokumovich)

$$
\mathrm{W}(M) \leq C(n) \max \left\{1, \operatorname{MCV}(M)^{\frac{1}{n}}\right\} \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

Corollary (G-A \& L)
If $\left(M^{n}, g\right)$ is conformally non-negatively Ricci curved then:

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.
Theorem (G-A \& Liokumovich)

$$
\mathrm{W}(M) \leq C(n) \max \left\{1, \operatorname{MCV}(M)^{\frac{1}{n}}\right\} \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

Corollary (G-A \& L)
If $\left(M^{n}, g\right)$ is conformally non-negatively Ricci curved then:

$$
W(M) \leq C(n) \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

Definition (Hassannezhad 2011)
Let M^{n} be a compact Riemannian n-manifold.

$$
\operatorname{MCV}(M, g)=\inf _{\varphi}\left\{\operatorname{vol}_{n}(M, \varphi g): \operatorname{Ricci}(M, \varphi g) \geq-(n-1)\right\}
$$

is the minimal conformal volume of M.
Theorem (G-A \& Liokumovich)

$$
\mathrm{W}(M) \leq C(n) \max \left\{1, \operatorname{MCV}(M)^{\frac{1}{n}}\right\} \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

Corollary (G-A \& L)
If $\left(M^{n}, g\right)$ is conformally non-negatively Ricci curved then:

$$
W(M) \leq C(n) \operatorname{vol}_{n}(M)^{\frac{n-1}{n}}
$$

(The Width-Volume Inequality holds for these manifolds.)

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n.

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n. When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n. When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.
When $n \geq 2$:

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n. When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$. When $n \geq 2$: By Gauss-Bonnet

$$
\operatorname{area}\left(\Sigma_{n}, g\right) \geq 4 \pi(n-1)
$$

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n. When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.
When $n \geq 2$: By Gauss-Bonnet

$$
\operatorname{area}\left(\Sigma_{n}, g\right) \geq 4 \pi(n-1)
$$

Apply hyperbolic uniformization to obtain $\left(\Sigma_{n}, \varphi g\right)$.

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n. When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.
When $n \geq 2$: By Gauss-Bonnet

$$
\operatorname{area}\left(\Sigma_{n}, g\right) \geq 4 \pi(n-1)
$$

Apply hyperbolic uniformization to obtain $\left(\Sigma_{n}, \varphi g\right)$.
Thus, $\operatorname{MCV}\left(\Sigma_{n}\right)=4 \pi(n-1)$.

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n.
When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.
When $n \geq 2$: By Gauss-Bonnet

$$
\operatorname{area}\left(\Sigma_{n}, g\right) \geq 4 \pi(n-1)
$$

Apply hyperbolic uniformization to obtain $\left(\Sigma_{n}, \varphi g\right)$.
Thus, $\operatorname{MCV}\left(\Sigma_{n}\right)=4 \pi(n-1)$.
Theorem (G-A \& L)
$W\left(\Sigma_{n}\right) \leq 220 \sqrt{(n-1) \operatorname{area}\left(\Sigma_{n}\right)}$ for any closed oriented surface.

MCV and Surfaces

Consider $M=\Sigma_{n}$ an oriented Riemannian surface of genus n.
When the genus $n<2$ we obtain: $\operatorname{MCV}\left(\Sigma_{n}\right)=0$.
When $n \geq 2$: By Gauss-Bonnet

$$
\operatorname{area}\left(\Sigma_{n}, g\right) \geq 4 \pi(n-1)
$$

Apply hyperbolic uniformization to obtain $\left(\Sigma_{n}, \varphi g\right)$.
Thus, $\operatorname{MCV}\left(\Sigma_{n}\right)=4 \pi(n-1)$.
Theorem (G-A \& L)
$W\left(\Sigma_{n}\right) \leq 220 \sqrt{(n-1) \operatorname{area}\left(\Sigma_{n}\right)}$ for any closed oriented surface.
(Balacheff \& Sabourau 2010 for oriented Σ_{n} with an improved constant.)

Sketch of the Sweep-Out Construction

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.
- Assemble the sweep outs of parts to global sweep out.

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.
- Assemble the sweep outs of parts to global sweep out.

We needed:

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.
- Assemble the sweep outs of parts to global sweep out.

We needed:

- Control over the isoperimetric constant.

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.
- Assemble the sweep outs of parts to global sweep out.

We needed:

- Control over the isoperimetric constant.
- An estimate of multiplicities of covers by balls

Sketch of the Sweep-Out Construction

- Use an isoperimetric inequality to subdivide M into parts.
- Iterate the subdivision process until all parts are small volume.
- Estimate width of small parts by the area of their boundaries.
- Assemble the sweep outs of parts to global sweep out.

We needed:

- Control over the isoperimetric constant.
- An estimate of multiplicities of covers by balls

Subdivision Area and Homological Filling

Subdivision Area and Homological Filling

Definition

Subdivision Area and Homological Filling

Definition
Let M be a Riemannian 3-sphere with volume V.

Subdivision Area and Homological Filling

Definition
Let M be a Riemannian 3-sphere with volume V. An embedded surface $\Sigma \subset M$ is η-subdividing if:

Subdivision Area and Homological Filling

Definition
Let M be a Riemannian 3-sphere with volume V. An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

Subdivision Area and Homological Filling

Definition
Let M be a Riemannian 3-sphere with volume V. An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

We define the subdivision area of M to be:

Subdivision Area and Homological Filling

Definition

Let M be a Riemannian 3-sphere with volume V.
An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

We define the subdivision area of M to be:

$$
\mathrm{SA}_{\epsilon}(M)=\inf \left\{\operatorname{area}(\Sigma): \Sigma \text { is }\left(\frac{1}{4}-\epsilon\right)-\text { subdividing }\right\}
$$

Subdivision Area and Homological Filling

Definition

Let M be a Riemannian 3-sphere with volume V.
An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

We define the subdivision area of M to be:

$$
\mathrm{SA}_{\epsilon}(M)=\inf \left\{\operatorname{area}(\Sigma): \Sigma \text { is }\left(\frac{1}{4}-\epsilon\right)-\text { subdividing }\right\}
$$

Definition

$$
\mathrm{HF}_{1}(\ell)=\sup _{\text {length }(z) \leq \ell}\left(\inf _{\partial c=z} \operatorname{area}(c)\right)
$$

Subdivision Area and Homological Filling

Definition

Let M be a Riemannian 3-sphere with volume V.
An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

We define the subdivision area of M to be:

$$
\mathrm{SA}_{\epsilon}(M)=\inf \left\{\operatorname{area}(\Sigma): \Sigma \text { is }\left(\frac{1}{4}-\epsilon\right)-\text { subdividing }\right\}
$$

Definition

$$
\mathrm{HF}_{1}(\ell)=\sup _{\operatorname{length}(z) \leq \ell}\left(\inf _{\partial c=z} \operatorname{area}(c)\right)
$$

is the first homological filling function of M.

Subdivision Area and Homological Filling

Definition

Let M be a Riemannian 3-sphere with volume V.
An embedded surface $\Sigma \subset M$ is η-subdividing if:

$$
M \backslash \Sigma=X_{1} \sqcup X_{2} \text { and } \operatorname{vol}\left(X_{i}\right)>\eta V \text { for } i=1,2
$$

We define the subdivision area of M to be:

$$
\mathrm{SA}_{\epsilon}(M)=\inf \left\{\operatorname{area}(\Sigma): \Sigma \text { is }\left(\frac{1}{4}-\epsilon\right)-\text { subdividing }\right\}
$$

Definition

$$
\mathrm{HF}_{1}(\ell)=\sup _{\operatorname{length}(z) \leq \ell}\left(\inf _{\partial c=z} \operatorname{area}(c)\right)
$$

is the first homological filling function of M.

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.
Theorem (Papasoglu \& Swenson 2016)

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.
Theorem (Papasoglu \& Swenson 2016)
There exist Riemannian 3-spheres $M_{k}=\left(S^{3}, g_{k}\right)$ such that:

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.
Theorem (Papasoglu \& Swenson 2016)
There exist Riemannian 3-spheres $M_{k}=\left(S^{3}, g_{k}\right)$ such that:

$$
\operatorname{vol}_{3}\left(M_{k}\right)=1
$$

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.
Theorem (Papasoglu \& Swenson 2016)
There exist Riemannian 3-spheres $M_{k}=\left(S^{3}, g_{k}\right)$ such that:

$$
\operatorname{vol}_{3}\left(M_{k}\right)=1, \operatorname{diam}\left(M_{k}\right)=1,
$$

Geometric Bisection

Theorem (G-A \& Zhu)
For any Riemannian 3-sphere

$$
\mathrm{SA}(M) \leq 3 \mathrm{HF}_{1}(2 d)
$$

where d is the diameter of M.
Theorem (Papasoglu \& Swenson 2016)
There exist Riemannian 3-spheres $M_{k}=\left(S^{3}, g_{k}\right)$ such that:

$$
\operatorname{vol}_{3}\left(M_{k}\right)=1, \operatorname{diam}\left(M_{k}\right)=1, \text { and } \mathrm{SA}\left(M_{k}\right)>k
$$

Sketch for Bisecting Surfaces

Sketch for Bisecting Surfaces

- Suppose there are no such bisecting surfaces.

Sketch for Bisecting Surfaces

- Suppose there are no such bisecting surfaces.
- Small volume fillings $M \backslash \Sigma$ for lots of $\Sigma \subset M$

Sketch for Bisecting Surfaces

- Suppose there are no such bisecting surfaces.
- Small volume fillings $M \backslash \Sigma$ for lots of $\Sigma \subset M$
- Construct a chain map from a contractible complex to $C_{*}(M)$.

Sketch for Bisecting Surfaces

- Suppose there are no such bisecting surfaces.
- Small volume fillings $M \backslash \Sigma$ for lots of $\Sigma \subset M$
- Construct a chain map from a contractible complex to $C_{*}(M)$.
- Obtain a contradiction to $H_{3}(M) \neq 0$.

Sketch for Bisecting Surfaces

- Suppose there are no such bisecting surfaces.
- Small volume fillings $M \backslash \Sigma$ for lots of $\Sigma \subset M$
- Construct a chain map from a contractible complex to $C_{*}(M)$.
- Obtain a contradiction to $H_{3}(M) \neq 0$.
- Desingularize the cycle to obtain a surface.

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol $_{n}(U)<\epsilon(n)$

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol ${ }_{n}(U)<\epsilon(n)$ admits an expanding embedding $U \xrightarrow{\text { e.e. }} B^{n}(1)$?

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol ${ }_{n}(U)<\epsilon(n)$ admits an expanding embedding $U \xrightarrow{\text { e.e. }} B^{n}(1)$?
(This would imply the W - V Inequality in \mathbb{R}^{n}.)

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol ${ }_{n}(U)<\epsilon(n)$ admits an expanding embedding $U \xrightarrow{\text { e.e. }} B^{n}(1)$?
(This would imply the W-V Inequality in \mathbb{R}^{n}.)
Theorem (G-A)
If U is an open bounded Jordan measurable set in the plane and

Planar Sponges

Question (Guth 2007)
Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol ${ }_{n}(U)<\epsilon(n)$ admits an expanding embedding $U \xrightarrow{\text { e.e. }} B^{n}(1)$?
(This would imply the W-V Inequality in \mathbb{R}^{n}.)
Theorem (G-A)
If U is an open bounded Jordan measurable set in the plane and area $(U)<1 / 10$ then

Planar Sponges

Question (Guth 2007)

Are there universal constants $\epsilon(n)$ such that:
Every open bounded subset $U \subset \mathbb{R}^{n}$ with vol ${ }_{n}(U)<\epsilon(n)$ admits an expanding embedding $U \xrightarrow{\text { e.e. }} B^{n}(1)$?
(This would imply the W-V Inequality in \mathbb{R}^{n}.)
Theorem (G-A)
If U is an open bounded Jordan measurable set in the plane and area $(U)<1 / 10$ then

$$
U \xrightarrow{\text { e.e. }} \mathbb{R} \times[0,1]
$$

Questions? Comments?

Questions? Comments?

parker.glynn.adey@utoronto.ca

Questions? Comments?

parker.glynn.adey@utoronto.ca

www.pgadey.ca

