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(n − 1)-Width

Let (Mn, g) be a compact Riemannian manifold.

Metrize the space of Lipschitz (n − 1)-cycles in M.

Definition
A continuous loop

z : S1 → Zn−1(M,Z/2Z)

of (n − 1)-cycles sweeps out M if z assembles to [M]
under Almgren’s isomorphism: π1(Zn−1(M)) ' Hn(M).

Definition
The width of (M, g) is

W(M) = inf
z

(
sup
p

[voln−1(zp)]

)
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The (n − 1)-Width-Volume Inequality

Theorem (Guth 2007)

There are universal constants C (n) such that:

Every open bounded subset U ⊂ Rn satisfies

W(U) ≤ C (n) voln(U)
n−1
n

Theorem (Burago & Ivanov 1995)

The 3-torus admits a metrics Tk = (T 3, gk) with:

vol(Tk) = 1 and W(Tk) > k

(The Width-Volume Inequality doesn’t hold for general manifolds.)
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Definition (Hassannezhad 2011)

Let Mn be a compact Riemannian n-manifold.

MCV(M, g) = inf
ϕ
{voln(M, ϕg) : Ricci(M, ϕg) ≥ −(n − 1)}

is the minimal conformal volume of M.

Theorem (G-A & Liokumovich)

W(M) ≤ C (n) max{1,MCV(M)
1
n } voln(M)

n−1
n

Corollary (G-A & L)

If (Mn, g) is conformally non-negatively Ricci curved then:

W(M) ≤ C (n) voln(M)
n−1
n

(The Width-Volume Inequality holds for these manifolds.)
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MCV and Surfaces

Consider M = Σn an oriented Riemannian surface of genus n.

When the genus n < 2 we obtain: MCV(Σn) = 0.

When n ≥ 2: By Gauss-Bonnet

area(Σn, g) ≥ 4π(n − 1)

Apply hyperbolic uniformization to obtain (Σn, ϕg).
Thus, MCV(Σn) = 4π(n − 1).

Theorem (G-A & L)

W (Σn) ≤ 220
√

(n − 1) area(Σn) for any closed oriented surface.

(Balacheff & Sabourau 2010 for oriented Σn with an improved constant.)
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Sketch of the Sweep-Out Construction

• Use an isoperimetric inequality to subdivide M into parts.

• Iterate the subdivision process until all parts are small volume.

• Estimate width of small parts by the area of their boundaries.

• Assemble the sweep outs of parts to global sweep out.

We needed:

• Control over the isoperimetric constant.

• An estimate of multiplicities of covers by balls
of small volume and boundary area.
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Subdivision Area and Homological Filling

Definition
Let M be a Riemannian 3-sphere with volume V .
An embedded surface Σ ⊂ M is η-subdividing if:

M \ Σ = X1 t X2 and vol(Xi ) > ηV for i = 1, 2

We define the subdivision area of M to be:

SAε(M) = inf

{
area(Σ) : Σ is

(
1

4
− ε
)
−subdividing

}

Definition

HF1(`) = sup
length(z)≤`

(
inf
∂c=z

area(c)

)
is the first homological filling function of M.
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area(c)

)
is the first homological filling function of M.



Geometric Bisection

Theorem (G-A & Zhu)

For any Riemannian 3-sphere

SA(M) ≤ 3 HF1(2d)

where d is the diameter of M.

Theorem (Papasoglu & Swenson 2016)

There exist Riemannian 3-spheres Mk = (S3, gk) such that:

vol3(Mk) = 1, diam(Mk) = 1, and SA(Mk) > k.
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Sketch for Bisecting Surfaces

• Suppose there are no such bisecting surfaces.

• Small volume fillings M \ Σ for lots of Σ ⊂ M

• Construct a chain map from a contractible complex to C∗(M).

• Obtain a contradiction to H3(M) 6= 0.

• Desingularize the cycle to obtain a surface.
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Planar Sponges

Question (Guth 2007)

Are there universal constants ε(n) such that:

Every open bounded subset U ⊂ Rn with voln(U) < ε(n)
admits an expanding embedding U

e.e.→ Bn(1)?

(This would imply the W-V Inequality in Rn.)

Theorem (G-A)

If U is an open bounded Jordan measurable set in the plane and
area(U) < 1/10 then

U
e.e.→ R× [0, 1]
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